Chaotic Markers In Dynamic Diffraction

APPLIED OPTICS(2020)

引用 0|浏览3
暂无评分
摘要
In a dynamic far-field diffraction experiment, we calculate the largest Lyapunov exponent of a time series obtained from the optical fluctuations in a dynamic diffraction pattern. The time series is used to characterize the locomotory predictability of an oversampled microscopic species. We use a live nematode, Caenorhabditis elegans, as a model organism to demonstrate our method. The time series is derived from the intensity at one point in the diffraction pattern. This single time series displays chaotic markers in the locomotion of the Caenorhabditis elegans by reconstructing the multidimensional phase space. The average largest Lyapunov exponent (base e) associated with the dynamic diffraction of 10 adult wildtype (N2) Caenorhabditis elegans is 1.27 +/- 0.03 s(-1). (C) 2020 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要