Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run

A. Buikema,C. Cahillane,G. L. Mansell,C. D. Blair,R. Abbott,C. Adams,R. X. Adhikari, A. Ananyeva, S. Appert,K. Arai,J. S. Areeda,Y. Asali,S. M. Aston,C. Austin,A. M. Baer,M. Ball,S. W. Ballmer,S. Banagiri,D. Barker,L. Barsotti,J. Bartlett,B. K. Berger, J. Betzwieser,D. Bhattacharjee, G. Billingsley,S. Biscans,R. M. Blair,N. Bode,P. Booker, R. Bork, A. Bramley, A. F. Brooks,D. D. Brown,K. C. Cannon,X. Chen,A. A. Ciobanu,F. Clara,S. J. Cooper,K. R. Corley,S. T. Countryman,P. B. Covas, D. C. Coyne, L. E. H. Datrier,D. Davis,C. Di Fronzo,K. L. Dooley,J. C. Driggers,P. Dupej,S. E. Dwyer,A. Effler, T. Etzel,M. Evans,T. M. Evans, J. Feicht,A. Fernandez-Galiana, P. Fritschel,V. V. Frolov,P. Fulda, M. Fyffe,J. A. Giaime,K. D. Giardina,P. Godwin,E. Goetz,S. Gras,C. Gray,R. Gray,A. C. Green,E. K. Gustafson,R. Gustafson,J. Hanks,J. Hanson, T. Hardwick, R. K. Hasskew,M. C. Heintze,A. F. Helmling-Cornell, N. A. Holland,J. D. Jones,S. Kandhasamy,S. Karki, M. Kasprzack, K. Kawabe, N. Kijbunchoo,P. J. King,J. S. Kissel,Rahul Kumar,M. Landry,B. B. Lane, B. Lantz, M. Laxen, Y. K. Lecoeuche, J. Leviton,J. Liu, M. Lormand, A. P. Lundgren,R. Macas, M. MacInnis,D. M. Macleod,S. Márka,Z. Márka,D. V. Martynov,K. Mason,T. J. Massinger,F. Matichard, N. Mavalvala,R. McCarthy,D. E. McClelland,S. McCormick, L. McCuller,J. McIver,T. McRae, G. Mendell, K. Merfeld,E. L. Merilh, F. Meylahn, T. Mistry,R. Mittleman,G. Moreno,C. M. Mow-Lowry,S. Mozzon,A. Mullavey, T. J. N. Nelson,P. Nguyen,L. K. Nuttall, J. Oberling,Richard J. Oram,C. Osthelder,D. J. Ottaway, H. Overmier,J. R. Palamos,W. Parker,E. Payne,A. Pele, R. Penhorwood,C. J. Perez, M. Pirello, H. Radkins, K. E. Ramirez,J. W. Richardson,K. Riles, N. A. Robertson,J. G. Rollins, C. L. Romel,J. H. Romie,M. P. Ross,K. Ryan,T. Sadecki,E. J. Sanchez, L. E. Sanchez,T. R. Saravanan,R. L. Savage, D. Schaetzl,R. Schnabel, R. M. S. Schofield,E. Schwartz,D. Sellers,T. Shaffer,D. Sigg,B. J. J. Slagmolen,J. R. Smith,S. Soni, B. Sorazu,A. P. Spencer,K. A. Strain,L. Sun,M. J. Szczepańczyk, M. Thomas, P. Thomas,K. A. Thorne, K. Toland,C. I. Torrie, G. Traylor,M. Tse, A. L. Urban, G. Vajente,G. Valdes,D. C. Vander-Hyde,P. J. Veitch,K. Venkateswara,G. Venugopalan, A. D. Viets,T. Vo, C. Vorvick,M. Wade,R. L. Ward,J. Warner,B. Weaver,R. Weiss,C. Whittle, B. Willke,C. C. Wipf,L. Xiao,H. Yamamoto,Hang Yu,Haocun Yu,L. Zhang, M. E. Zucker, J. Zweizig

PHYSICAL REVIEW D(2020)

引用 269|浏览33
暂无评分
摘要
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector.
更多
查看译文
关键词
advanced ligo detectors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要