谷歌浏览器插件
订阅小程序
在清言上使用

Characterization of Clostridium Perfringens Isolates Collected from Three Agricultural Biogas Plants over a One-Year Period

International journal of environmental research and public health/International journal of environmental research and public health(2020)

引用 8|浏览14
暂无评分
摘要
Digestate produced by agricultural biogas plants (BGPs) may contain pathogenic bacteria. Among them, Clostridium perfringens deserves particular attention due to its ability to grow under anaerobic conditions and persist in amended soil. The aim of this study was to examine the potential pathogenicity and the antimicrobial resistance of C. perfringens in manure and digestate collected from three agricultural biogas plants (BGPs). A total of 157 isolates (92 from manure, 65 from digestate) were screened for genes encoding seven toxins (cpa, cpb, etx, iapcpe, netB, and cpb2). The 138 cpa positive isolates were then screened for tetA(P), tetB(P), tet(M), and erm(Q) genes and tested for antimicrobial susceptibility. The toxinotypes identified in both manure and digestate were type A (78.3% of the isolates), type G (16.7%), type C (3.6%), and type D (1.4%), whereas none of the isolates were type F. Moreover, half of the isolates carried the cpb2 gene. The overall prevalence of tetA(P) gene alone, tetA(P)-tetB(P) genes, and erm(Q) gene was 31.9, 34.8, and 6.5%, respectively. None of the isolates harbored the tet(M) gene. Multiple antimicrobial resistant isolates were found in samples that were collected from all the manure and digestates. Among them, 12.3% were highly resistant to some of the antibiotics tested, especially to clindamycin (MIC ≥ 16 µg/mL) and tilmicosin (MIC > 64 µg/mL). Some isolates were highly resistant to antibiotics used in human medicine, including vancomycin (MIC > 8 µg/mL) and imipenem (MIC > 64 µg/mL). These results suggest that digestate may be a carrier of the virulent and multidrug resistant C. perfringens.
更多
查看译文
关键词
perfringens,mesophilic anaerobic digestion,manure,digestate,toxinotypes,antimicrobial susceptibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要