Development of eugenol-loaded submicron emulsion and its antiepileptic effect through regulating the oxidative stress

International Journal of Pharmaceutics(2020)

引用 5|浏览15
暂无评分
摘要
The purpose of this study was to develop an injectable submicron emulsion of eugenol (Eug-SE) and to investigate its antagonism on epilepsy. The formulation was optimized using a complete randomized design, comprising 5% (w/v) eugenol, 5% (w/v) soybean oil, 1.2% (w/v) egg phosphatidylcholine, 0.3% (w/v) poloxamer 188, and 0.03% (w/v) sodium oleate. The prepared Eug-SE was comprehensively evaluated in terms of its pharmaceutical characteristics, physicochemical stability, injection safety, antioxidant activity in vitro, and anti-epileptic effect in vivo. The mean particle size of Eug-SE was 176.1 ± 10.3 nm, the ζ-potential was −40.2 ± 1.8 mV, and the drug content was (95.3 ± 0.4) %. Moreover, the Eug-SE displayed excellent stability and improved safety compared to the eugenol solution. The Eug-SE (20 μg/mL) produced a significant neuroprotective effect against H2O2-induced oxidative damage in PC12 cells, which was attributed to the decrease of cellular reactive oxygen species level and mitochondrial damage. Besides, the in vivo test indicated that Eug-SE exerted an anti-epileptic effect in the PTZ treated mice. These results suggested that Eug-SE was a suitable dosage form of eugenol for injection, and displayed great therapeutic potential for neurological disease in the future.
更多
查看译文
关键词
Eugenol,Submicron emulsion,Safety evaluation,Antioxidation,Antiepileptic effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要