STINT: selective transmission for low-energy physiological monitoring

ISLPED '20: ACM/IEEE International Symposium on Low Power Electronics and Design Boston Massachusetts August, 2020(2020)

引用 1|浏览20
暂无评分
摘要
Noninvasive, and continuous physiological sensing enabled by novel wearable sensors is generating unprecedented diagnostic insights in many medical practices. However, the limited battery capacity of these wearable sensors poses a critical challenge in extending device lifetime in order to prevent omission of informative events. In this work, we exploit the inherent sparsity of physiological signals to intelligently enable selective transmission of these signals and thereby improve the energy efficiency of wearable sensors. We propose STINT, a selective transmission framework that generates a sparse representation of the raw signal based on domain-specific knowledge, and which can be integrated into a wide range of resource-constrained embedded sensing IoT platforms. STINT employs a neural network (NN) for selective transmission: the NN identifies, and transmits only the informative parts of the raw signal, thereby achieving low power operation. We validate STINT and establish its efficacy in the domain of IoT for energy-efficient physiological monitoring, by testing our framework on EcoBP - a novel miniaturized, and wireless continuous blood pressure sensor. Early experimental results on the EcoBP device demonstrate that the STINT-enabled EcoBP sensor outperforms the native platform by 14% of sensor energy consumption, with room for additional energy savings via complementary bluetooth and wireless optimizations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要