Reducing background absorbance via a double-lock strategy for detection of alkaline phosphatase and α-fetoprotein

MICROCHIMICA ACTA(2020)

引用 5|浏览5
暂无评分
摘要
Lowering the background signal for more sensitive analysis of determinands is as important as amplifying the target signal. The photoinduced oxidase of fluorescein has been reported, which can catalyze the oxidization of common substrates in a few minutes. As a metaphor for locks and keys, we designed double locks confining the activity of fluorescein to reduce the background absorbance during colorimetric detection. The first lock inhibits the main activity of fluorescein by phosphating. The second lock almost completely deactivates fluorescein by forming coordination nanoparticles (CNPs) via the self-assembly of cerium chloride and fluorescein diphosphate (FDP). The Ce-FDP CNPs are characterized by scanning electron microscope (SEM), dynamic light scattering (DLS), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectrum (EDS), which show electrostatic formation and amorphous character in the morphology. Alkaline phosphatase (ALP), the key to release fluorescein, can destroy Ce-FDP CNPs along with decomposing FDP by degrading phosphate groups. Therefore, a novel colorimetric strategy for sensitive detection of ALP is established. The detection of α-fetoprotein (AFP) is further succeeded by labeling AFP antibody with ALP. By dramatically reducing the background absorbance, the detection limits of ALP and AFP are as low as 0.014 mU/mL and 0.023 ng/mL, respectively. This convenient, brief, sensitive assay provides a promising prospect for clinical diagnosis. Graphical abstract
更多
查看译文
关键词
Ce 3 +
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要