谷歌浏览器插件
订阅小程序
在清言上使用

Electroacupuncture Pretreatment Alleviates LPS-Induced Acute Respiratory Distress Syndrome Via Regulating the PPAR Gamma/NF-Kappa B Signaling Pathway

Evidence-based complementary and alternative medicine(2020)

引用 6|浏览13
暂无评分
摘要
Electroacupuncture (EA) is reported to possess anti-inflammatory properties and has beneficial effects on acute respiratory distress syndrome (ARDS). However, the underlying mechanisms of the effects of EA on ARDS remain unclear. This study aims to investigate the protective effect of EA on LPS-induced ARDS. In this study, Sprague-Dawley male rats were treated with EA at Hegu (LI4) for 45 minutes before LPS instillation (0.4 mg/kg, 100 ul). H&E staining, wet-to-dry weight (W/D) ratio, PaO2, and protein content in BALF were employed to determine the function of lung tissues. Inflammatory cytokines in serum and BALF were detected by enzyme-linked immunoassay assay (ELISA). The levels of oxidative stress markers were detected to determine the oxidative stress status. Cell apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and western blot. Here, we found that EA pretreatment effectively alleviated lung pathological damage. Moreover, EA suppressed the oxidative stress damage by upregulating glutathione and superoxide dismutase and downregulating malondialdehyde. EA pretreatment also regulated apoptosis-related proteins, such as Bax and Bcl-2. We found that peroxisome proliferators-activated receptors γ (PPARγ) play a critical role during ARDS, EA up-regulated the expression of PPARγ, which inhibited the activation of nuclear factor-kappa B (NF-κB) and decreased the inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). When rats were treated with GW9662, a selective PPARγ antagonist, these effects of EA were reversed. Our study demonstrated that EA pretreatment had a beneficial effect on LPS-induced ARDS in rats by anti-inflammatory, antioxidative, and antiapoptotic properties which was regulated via PPARγ/NF-κB signaling pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要