谷歌浏览器插件
订阅小程序
在清言上使用

Activation of Nrf2 signaling by oltipraz inhibits death of human macrophages with mycobacterium tuberculosis infection.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS(2020)

引用 9|浏览9
暂无评分
摘要
Mycobacterium tuberculosis (MTB) infection can induce cytotoxicity to the host macrophages, promoting bacterial spread. We here tested the potential effect of oltipraz, a synthetic dithiolethione, in MTB-infected human macrophages. We show that oltipraz significantly inhibited MTB-induced death and apoptosis in human macrophages. MTB-induced reactive oxygen species production, mitochondrial depolarization and programmed necrosis were attenuated by oltipraz in macrophages. Oltipraz activated Nrf2 signaling, causing Keapl-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation, simultaneously promoting expression of Nrf2-dependent genes (HO1, NQO1 and GST) in human macrophages. Nrf2 shRNA or CRISPR/Cas9-induced Nrf2 knockout completely reversed oltipraz-induced macrophage protection against MTB infection. Furthermore, CRISPR/Cas9-mediated Keap1 knockout induced Nrf2 cascade activation and protected human macrophages from MTB. Importantly, oltipraz was unable to offer further cytoprotection against MTB in Keap1 knockout macrophages. Collectively we conclude that oltipraz activates Nrf2 signaling cascade to protect human macrophages from MTB-induced oxidative injury and cell death. (C) 2020 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Mycobacterium tuberculosis (MTB),Macrophages,Oltipraz,Nrf2,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要