Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance.

JOURNAL OF MATERIALS CHEMISTRY B(2020)

引用 9|浏览6
暂无评分
摘要
Efficient delivery of chemotherapeutic agents into tumor cells and reversal of chemoresistance are crucially important to enhance cancer therapy. We fabricated pH/redox dual responsive nanocarriers based on cell penetrating peptides (TAT) functionalized TPGS (cTAT-TPGS) and polypeptide (PEG-b-poly(aspartic-lipoic acid), PPAL) to reduce the permanent drug release and overcome multidrug resistance. TAT was used to functionalize TPGS and shielded by pH-responsive fatty acids, and polypeptides with lipoic acid side chains (PPAL) were synthesized. Reversibly crosslinked hybrid micelles (RCMs) were fabricated based on cTAT-TPGS and PPAL. RCMs nanocarriers exhibited acid-responsive charge reversal and redox-responsive drug release. Thein vitroresults showed that the RCMs could be efficiently internalized by the MCF-7/ADR cells in an acidic microenvironment and inhibited the DOX efflux, causing a higher cytotoxicity than non-crosslinked nanocarriers. Furthermore, the dual-responsive structure effectively prolonged the circulation time of RCM nanocarriers and achieved a high level of accumulation in cancer cellsin vivo, leading to much more effective inhibition of tumor growth. The DOX-loaded RCMs also showed excellent biosafety, especially for the myocardium tissue. This novel strategy provided an effective platform for drug target delivery and reversal of MDR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要