Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine

Cellular and Molecular Gastroenterology and Hepatology(2018)

引用 0|浏览0
暂无评分
摘要
Background & Aims Cystic fibrosis (CF) patients and CF mouse models have increased risk for gastrointestinal tumors. CF mice show augmented intestinal proliferation of unknown etiology and an altered intestinal environment. We examined the role of the cystic fibrosis transmembrane conductance regulator (Cftr) in Wnt/β-catenin signaling, stem cell proliferation, and its functional expression in the active intestinal stem cell (ISC) population. Dysregulation of intracellular pH (pHi) in CF ISCs was investigated for facilitation of Wnt/β-catenin signaling. Methods Crypt epithelia from wild-type (WT) and CF mice were compared ex vivo and in intestinal organoids (enteroids) for proliferation and Wnt/β-catenin signaling by standard assays. Cftr in ISCs was assessed by immunoblot of sorted Sox9enhanced green fluorescent protein(EGFP) intestinal epithelia and pHi regulation by confocal microfluorimetry of leucine-rich G-protein–coupled receptor 5 ISCs. Plasma membrane association of the Wnt transducer Dishevelled 2 (Dvl2) was assessed by fluorescence imaging of live enteroids from WT and CF mice crossed with Dvl2-EGFP/ACTB-tdTomato,-EGFP)Luo/J (RosamT/mG) mice. Results Relative to WT, CF intestinal crypts showed an ∼30% increase in epithelial and Lgr5+ ISC proliferation and increased Wnt/β-catenin signaling. Cftr was expressed in Sox9EGFPLo ISCs and loss of Cftr induced an alkaline pHi in ISCs. CF crypt-base columnar cells showed a generalized increase in plasma membrane Dvl2-EGFP association as compared with WT. Dvl2-EGFP membrane association was charge- and pH-dependent and increased in WT crypt-base columnar cells by Cftr inhibition. Conclusions CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.
更多
查看译文
关键词
Cystic Fibrosis,Dishevelled,Organoids,Intracellular pH,Neoplasia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要