A Single Cas9-Vpr Nuclease For Simultaneous Gene Activation, Repression, And Editing In Saccharomyces Cerevisiae

ACS SYNTHETIC BIOLOGY(2020)

引用 23|浏览23
暂无评分
摘要
Combinatorial metabolic engineering has been widely established for the development of efficient microbial cell factories to produce the products of interest by precisely regulating the expression levels of multiple genes simultaneously. Here, we report a novel multifunctional CRISPR system that enables simultaneous gene activation, repression, and editing (CRISPR-ARE) with a single Cas9-VPR protein for combinatorial metabolic engineering applications in Saccharomyces cerevisiae. Via gRNA engineering, we achieved orthogonal transcriptional regulations and genome editing using the nuclease active Cas9-VPR fusion protein, individually or in a combinatorial manner. After establishing a system for stable expression of multiple gRNAs on the same plasmid, we first demonstrated CRISPR-ARE for simultaneous mCherry activation, mVenus repression, and ADE2 disruption in a fluorescence reporter strain. Subsequently, we adopted CRISPR-ARE for simple and fast combinatorial metabolic engineering, which improved the production of alpha-santalene for 2.66-fold in a single step. Because of its simplicity and modularity, the developed CRISPR-ARE system could be applied for facile multifunctional metabolic engineering of microbial cell factories, particularly for which only a few CRISPR proteins have been characterized.
更多
查看译文
关键词
multifunctional CRISPR system, transcriptional regulation, combinatorial metabolic engineering, microbial cell factories, Saccharomyces cerevisiae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要