Pik3r2/Pik3r2activating Mutations Result In Brain Overgrowth Andeegchanges

ANNALS OF NEUROLOGY(2020)

引用 11|浏览34
暂无评分
摘要
Objective Mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) complex have been associated with a broad spectrum of brain and organ overgrowth syndromes. For example, mutations in phosphatidylinositol-3-kinase regulatory subunit 2 (PIK3R2) have been identified in human patients with megalencephaly polymicrogyria polydactyly hydrocephalus (MPPH) syndrome, which includes brain overgrowth. To better understand the pathogenesis ofPIK3R2-related mutations, we have developed and characterized a murine model. Methods We generated a knock-in mouse model for the most common humanPIK3R2mutation, p.G373R (p.G367R in mice) using CRISPR/Cas9. The mouse phenotypes, including brain size, seizure activity, cortical lamination, cell proliferation/size/density, interneuron migration, and PI3K pathway activation, were analyzed using standard methodologies. For human patients withPIK3R2mutations, clinical data (occipitofrontal circumference [OFC] and epilepsy) were retrospectively obtained from our clinical records (published / unpublished). Results The PI3K-AKT pathway was hyperactivated in these mice, confirming the p.G367R mutation is an activating mutation in vivo. Similar to human patients withPIK3R2mutations, these mice have enlarged brains. We found cell size to be increased but not cell numbers. The embryonic brain showed mild defects in cortical lamination, although not observed in the mature brain. Furthermore, electroencephalogram (EEG) recordings from mutant mice showed background slowing and rare seizures, again similar to our observations in human patients. Interpretation We have generated aPIK3R2mouse model that exhibits megalencephaly and EEG changes, both of which overlap with human patients. Our data provide novel insight into the pathogenesis of the human disease caused by PIK3R2 p.G373R mutation. We anticipate this model will be valuable in testing therapeutic options for human patients with MPPH. ANN NEUROL 2020
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要