Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A.

Lucy Lin,Margaret E Olson,Takashi Sugane,Lewis D Turner,Margarita A Tararina, Alexander L Nielsen, Elbek K Kurbanov,Sabine Pellett, Eric A Johnson,Seth M Cohen, Karen N Allen,Kim D Janda

Journal of medicinal chemistry(2020)

引用 16|浏览23
暂无评分
摘要
Botulinum neurotoxins have remarkable persistence (∼weeks to months in cells), outlasting the small-molecule inhibitors designed to target them. To address this disconnect, inhibitors bearing two pharmacophores-a zinc binding group and a Cys-reactive warhead-were designed to leverage both affinity and reactivity. A series of first-generation bifunctional inhibitors was achieved through structure-based inhibitor design. Through X-ray crystallography, engagement of both the catalytic Zn2+ and Cys165 was confirmed. A second-generation series improved on affinity by incorporating known reversible inhibitor pharmacophores; the mechanism was confirmed by exhaustive dialysis, mass spectrometry, and in vitro evaluation against the C165S mutant. Finally, a third-generation inhibitor was shown to have good cellular activity and low toxicity. In addition to our findings, an alternative method of modeling time-dependent inhibition that simplifies assay setup and allows comparison of inhibition models is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要