Environmental profile of thermoelectrics for applications with continuous waste heat generation via life cycle assessment.

The Science of the total environment(2020)

引用 7|浏览7
暂无评分
摘要
Over the past few decades, rigorous efforts have been undertaken to develop novel thermoelectrics (TEs) with high conversion efficiencies. However, poor TE device efficiencies and use of scarce and toxic constituent elements in major TEs raises valid questions about their ecological effectiveness. We evaluate this efficacy by investigating environmental performance of seven TE modules, spanning five different TEs, on a diverse range of impacts (including toxicity and scarcity) over their life cycle (cradle-to-grave). Exhaustive inventory is developed for all modules, particularly their production and end-of-life stages, in the first-ever exercise of its kind till date, to assess their benefits for applications involving constant waste heat emission. Three end-of-life scenarios are considered to determine ecological benefits and pitfalls of recycling TEs, a first in LCA literature on thermoelectrics. The results show the dominance of specific constituent elements and large processing-related electricity consumption on impacts caused by production for all modules. Over their life cycle, TE modules are seen to exhibit large positive environmental benefits, barring some exceptions, highlighting their substantial eco-credentials independent of the TE used. Also, barring circular economy approach in some cases, no end-of-life treatment is observed to significantly influence modular environmental impacts. Subsequent calculations show ecological benefits from TEs to be comparable with those from commonly used renewables like solar and wind energy, with the findings repeated under scenario-based sensitivity analysis despite 50% reduction in conversion efficiency and 15% lowering in usage duration, further validating their ecofriendly potential. Simultaneously, two key challenges that hinder large-scale application of TEs - marginal ecological benefits (even on converting high fraction of waste heat to electricity) and high costs - are pointed out. This work concludes by highlighting the urgent need for addressing major negative contributors to production-related impacts of this platform to boost its prospects for commercial application and transform its ecofriendly potential into reality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要