谷歌浏览器插件
订阅小程序
在清言上使用

Structure/Function Analysis of Human ZnT8 (SLC30A8): A Diabetes Risk Factor and Zinc Transporter.

Current research in structural biology(2020)

引用 10|浏览10
暂无评分
摘要
The human zinc transporter ZnT8 (SLC30A8) is expressed primarily in pancreatic β-cells and plays a key function in maintaining the concentration of blood glucose through its role in insulin storage, maturation and secretion. ZnT8 is an autoantigen for Type 1 diabetes (T1D) and is associated with Type 2 diabetes (T2D) through its risk allele that encodes a major non-synonymous single nucleotide polymorphism (SNP) at Arg325. Loss of function mutations improve insulin secretion and are protective against diabetes. Despite its role in diabetes and concomitant potential as a drug target, little is known about the structure or mechanism of ZnT8. To this end, we expressed ZnT8 in Pichia pastoris yeast and Sf9 insect cells. Guided by a rational screen of 96 detergents, we developed a method to solubilize and purify recombinant ZnT8. An in vivo transport assay in Pichia and a liposome-based uptake assay for insect-cell derived ZnT8 showed that the protein is functionally active in both systems. No significant difference in activity was observed between full-length ZnT8 (ZnT8A) and the amino-terminally truncated ZnT8B isoform. A fluorescence-based in vitro transport assay using proteoliposomes indicated that human ZnT8 functions as a Zn2+/H+ antiporter. We also purified E. coli-expressed amino- and carboxy-terminal cytoplasmic domains of ZnT8A. Circular dichroism spectrometry suggested that the amino-terminal domain contains predominantly α-helical structure, and indicated that the carboxy-terminal domain has a mixed α/β structure. Negative-stain electron microscopy and single-particle image analysis yielded a density map of ZnT8B at 20 Å resolution, which revealed that ZnT8 forms a dimer in detergent micelles. Two prominent lobes are ascribed to the transmembrane domains, and the molecular envelope recapitulates that of the bacterial zinc transporter YiiP. These results provide a foundation for higher resolution structural studies and screening experiments to identify compounds that modulate ZnT8 activity.
更多
查看译文
关键词
Circular dichroism spectrometry,Electron microscopy,Membrane protein expression,Diabetes mellitus,Zinc transporter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要