Dynamics of the femtosecond laser-triggered spark gap.

OPTICS EXPRESS(2020)

引用 9|浏览12
暂无评分
摘要
We present space and time resolved measurements of the air hydrodynamics induced by femtosecond laser pulse excitation of the air gap between two electrodes at high potential difference. We explore both plasma-based and plasma-free gap excitation. The former uses the plasma left in the wake of femtosecond filamentation, while the latter exploits air heating by multiple-pulse resonant excitation of quantum molecular wavepackets. We find that the cumulative electrode-driven air density depression channel plays the dominant role in the gap evolution leading to breakdown. Femtosecond laser heating serves mainly to initiate the depression channel; the presence of filament plasma only augments the early heating. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要