谷歌浏览器插件
订阅小程序
在清言上使用

Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae

Toxicology in vitro : an international journal published in association with BIBRA(2020)

引用 15|浏览12
暂无评分
摘要
Conazoles were designed to inhibit ergosterol biosynthesis. Conazoles have been widely used as agricultural fungicides and are frequently detected in the environment. Although conazoles have been reported to have adverse effects, such as potential carcinogenic effects, the underlying molecular mechanisms of toxicity remain unclear. Here, the molecular fingerprints of five conazoles (propiconazole (Pro), penconazole (Pen), tebuconazole (Teb), flusilazole (Flu) and epoxiconazole (Epo)) were assessed in Saccharomyces cerevisiae (yeast) via functional genome-wide knockout mutant profiling. A total of 169 (4.49%), 176 (4.67%), 198 (5.26%), 218 (5.79%) and 173 (4.59%) responsive genes were identified at three concentrations (IC50, IC20 and IC10) of Pro, Pen, Teb, Flu and Epo, respectively. The five conazoles tended to have similar gene mutant fingerprints and toxicity mechanisms. "Ribosome" (sce03010) and "cytoplasmic translation" (GO: 0002181) were the common KEGG pathway and GO biological process term by gene set enrichment analysis of the responsive genes, which suggested that conazoles influenced protein synthesis. Conazoles also affected fatty acids synthesis because "biosynthesis of unsaturated fatty acids" pathway was among the top-ranked KEGG pathways. Moreover, two genes, YGR037C (acyl-CoA-binding protein) and YCR034W (fatty acid elongase), were key fingerprints of conazoles because they played vital roles in conazole-induced toxicity. Overall, the fingerprints derived from the yeast functional genomic screening provide an alternative approach to elucidate the molecular mechanisms of environmental pollutant conazoles.
更多
查看译文
关键词
Mutant screening,Fingerprints,Responsive genes,Protein synthesis,Fatty acid synthesis,DNA damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要