Altered mitochondrial fusion drives defensive glutathione synthesis in cells able to switch to glycolytic ATP production.

Biochimica et biophysica acta. Molecular cell research(2020)

引用 11|浏览91
暂无评分
摘要
Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要