Rational design of hepatitis C virus E2 core nanoparticle vaccines

biorxiv(2019)

引用 0|浏览3
暂无评分
摘要
Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are critical for cell entry with E2 being the major target of neutralizing antibodies (NAbs). Here, we present a comprehensive strategy for B cell-based HCV vaccine development through E2 optimization and nanoparticle display. We redesigned variable region 2 in a truncated form (tVR2) on E2 cores derived from genotypes 1a and 6a, resulting in improved stability and antigenicity. Crystal structures of three optimized E2 cores with human cross-genotype NAbs (AR3s) revealed how the modified tVR2 stabilizes E2 without altering key neutralizing epitopes. We then displayed these E2 cores on 24- and 60-meric nanoparticles and achieved high yield, high purity, and enhanced antigenicity. In mice, these nanoparticles elicited more effective NAb responses than soluble E2 cores. Next-generation sequencing (NGS) defined distinct B-cell patterns associated with nanoparticle-induced antibody responses, which cross-neutralized HCV by targeting the conserved neutralizing epitopes on E2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要