谷歌浏览器插件
订阅小程序
在清言上使用

Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and conversion of 18-hydroxylcarlactonoates to canonical and non-canonical strigolactones in Lotus japonicus

Phytochemistry(2019)

引用 1|浏览19
暂无评分
摘要
Strigolactones (SLs) are a group of plant apocarotenoids that act as rhizosphere signaling molecules for both arbuscular mycorrhizal fungi and root parasitic plants. They also regulate plant architecture as phytohormones. The model legume Lotus japonicus produces canonical 5-deoxystrigol (5DS) and non-canonical lotuslactone (LL). The biosynthesis pathways of the two SLs remain elusive. In this study, we characterized the L. japonicus MAX1 homolog, LjMAX1 , found in the Lotus japonicus genome assembly build 2.5. The L. japonicus max1 LORE1 insertion mutant was deficient in 5DS and LL production. A recombinant LjMAX1 protein expressed in yeast microsomes converted carlactone (CL) to 18-hydroxycarlactonoic acid (18-HO-CLA) via carlactonoic acid (CLA). Identity of 18-HO-CLA was confirmed by comparison of the methyl ester derivative of the MAX1 product with the chemically synthesized methyl 18-hydroycarlactonoate (18-HO-MeCLA) using LC-MS/MS. (11 R )-CL was detected as an endogenous compound in the root of L. japonicus. 13C-labeled CL, CLA, and 18-HO-MeCLA were converted to [13C]-5DS and LL in plant feeding experiments using L. japonicus WT. These results showed that LjMAX1 is the crucial enzyme in the biosynthesis of Lotus SLs and that 18-hydroxylated carlactonoates are precursors for SL biosynthesis in L. japonicus .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要