Predicting agronomic traits and associated genomic regions in diverse rice landraces using marker stability

biorxiv(2019)

引用 0|浏览26
暂无评分
摘要
To secure the world’s food supply it is essential that we improve our knowledge of the genetic underpinnings of complex agronomic traits. In this paper, we report our findings from performing trait prediction and association mapping using marker stability in diverse rice landraces. We used the least absolute shrinkage and selection operator as our marker selection algorithm, and considered twelve real agronomic traits and a hundred simulated traits using a population with approximately a hundred thousand markers. For trait prediction, we considered several statistical/machine learning methods. We found that some of the methods considered performed best when preselected markers using marker stability were used. However, our results also show that one might need to make a trade-off between model size and performance for some learning methods. For association mapping, we compared marker stability to the genome-wide efficient mixed-model analysis (GEMMA), and for the simulated traits, we found that marker stability significantly outperforms GEMMA. For the real traits, marker stability successfully identifies multiple associated markers, which often entail those selected by GEMMA. Further analysis of the markers selected for the real traits using marker stability showed that they are located in known quantitative trait loci (QTL) using the QTL Annotation Rice Online database. Furthermore, co-functional network prediction of the selected markers using RiceNet v2 also showed association to known controlling genes. We argue that a wide adoption of the marker stability approach for the prediction of agronomic traits and association mapping could improve global rice breeding efforts.
更多
查看译文
关键词
diverse rice landraces,agronomic traits,genomic regions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要