Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin availability

biorxiv(2020)

引用 0|浏览22
暂无评分
摘要
Background The same species of plant can exhibit highly diverse sizes and shapes of organs that are genetically determined. Characterising genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. Results We screened a relatively well characterised collection of Arabidopsis thaliana ecotypes for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in the expression of a previously uncharacterised gene At4g16850 (named as KSK ) had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin availability was reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin availability during petal development. Conclusions Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis ecotypes that mediated differences in the expression of a previously undescribed membrane protein. This variation contributed to altered auxin availability and cell size during petal growth.
更多
查看译文
关键词
<italic>Arabidopsis thaliana</italic>,organ size variation,natural genetic variation,auxin responses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要