谷歌浏览器插件
订阅小程序
在清言上使用

PtrR (ynej) is a Novel E. Coli Transcription Factor Regulating the Putrescine Stress Response and Glutamate Utilization

crossref(2020)

引用 0|浏览10
暂无评分
摘要
ABSTRACTAlthough polyamines, such as putrescine (Ptr), induce envelope stress for bacteria, they are important as nitrogen and carbon sources. Ptr utilization in Escherichia coli involves protein glutamylation, and glutamate stands at a crossroads between catabolism and anabolism. This communication reports that the transcription factor YneJ, here renamed PtrR, is involved in the regulation of a small regulatory RNA gene, fnrS, and an operon, yneIHGF, encoding succinate-semialdehyde dehydrogenase, Sad (YneI), glutaminase, GlsB (YneH), and several other genes. The yneI promoter is activated during putrescine utilization under nitrogen/carbon starvation conditions, and we show that PtrR is important for the putrescine stress response. It is also a repressor of fnrS gene expression, involved in the cascade regulation of mRNA synthesis for the marA and sodB genes, involved in antibiotic responses. PtrR transcriptional regulation of fnrS leads to a regulatory cascade induced by this small RNA that affects mRNA levels of ompF and the multidrug resistance regulator, MarA. We propose that PtrR functions as a dual activator/repressor, and that its regulation is important for the responses to different stress conditions involving L-glutamine/L-glutamate and putrescine utilization.IMPORTANCEPutrescine is an important source of nitrogen for many organisms, but it also induces stress. Although its metabolism has been studied extensively, the regulatory mechanisms that control the stress response are still poorly understood. This study reveals that the HTH-type transcriptional regulator, YneJ in Escherichia coli, here re-named PtrR, is important for the putrescine stress response, in part because it plays a role in outer membrane porin regulation as a sensor in a regulatory cascade. Direct PtrR transcriptional regulation of the fnrS, yneI (sad), gltS and ptrR genes is documented and rationalized, and nine PtrR binding sites were identified using ChIP-Exo. A ptrR mutant exhibited altered resistance to a tetracycline group of antibiotics under microaerophilic conditions, suggesting that PtrR indirectly controls expression of porin genes such as ompF.
更多
查看译文
关键词
RNA Regulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要