Studying Dynamics Without Explicit Dynamics: A Structure-Based Study Of The Export Mechanism Byacrb

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS(2021)

引用 4|浏览13
暂无评分
摘要
Resistance-nodulation-cell division family proteins are transmembrane proteins identified as large spectrum drug transporters involved in multidrug resistance. A prototypical case in this superfamily, responsible for antibiotic resistance in selected gram-negative bacteria, is AcrB. AcrB forms a trimer using the proton motive force to efflux drugs, implementing a functional rotation mechanism. Unfortunately, the size of the system (1049 amino acid per monomer and membrane) has prevented a systematic dynamical exploration, so that the mild understanding of this coupled transport jeopardizes our ability to counter it. The large number of crystal structures of AcrB prompts studies to further our understanding of the mechanism. To this end, we present a novel strategy based on two key ingredients, which are to study dynamics by exploiting information embodied in the numerous crystal structures obtained to date, and to systematically consider subdomains, their dynamics, and their interactions. Along the way, we identify the subdomains responsible for dynamic events, refine the states (A, B, E) of the functional rotation mechanism, and analyze the evolution of intramonomer and intermonomer interfaces along the functional cycle. Our analysis shows the relevance of AcrB's efflux mechanism as a template within the HAE1 family but not beyond. It also paves the way to targeted simulations exploiting the most relevant degrees of freedom at certain steps, and to a targeting of specific interfaces to block the drug efflux. Our work shows that complex dynamics can be unveiled from static snapshots, a strategy that may be used on a variety of molecular machines of large size.
更多
查看译文
关键词
allostery, clustering, conformational changes, interfaces, molecular distances, transporters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要