A Faster Interior Point Method for Semidefinite Programming

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)(2020)

引用 105|浏览63
暂无评分
摘要
Semidefinite programs (SDPs) are a fundamental class of optimization problems with important recent applications in approximation algorithms, quantum complexity, robust learning, algorithmic rounding, and adversarial deep learning. This paper presents a faster interior point method to solve generic SDPs with variable size n ×n and m constraints in time Õ(√n(mn 2 +m ω +n ω )log(1/ε)), \end{equation*} where ω is the exponent of matrix multiplication and ε is the relative accuracy. In the predominant case of m ≥ n, our runtime outperforms that of the previous fastest SDP solver, which is based on the cutting plane method [JLSW20]. Our algorithm's runtime can be naturally interpreted as follows: O(√nlog(1/ε)) is the number of iterations needed for our interior point method, mn 2 is the input size, and m ω +n ω is the time to invert the Hessian and slack matrix in each iteration. These constitute natural barriers to further improving the runtime of interior point methods for solving generic SDPs.
更多
查看译文
关键词
SDP, Numerical Linear Algebra, Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要