Anomalous Hall effect triggered by pressure-induced magnetic phase transition in $\alpha$-Mn

arxiv(2020)

引用 12|浏览0
暂无评分
摘要
Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in anomalous Hall effect (AHE). However, since large Hall response originating from Berry curvature has been reported in quite limited materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental $\alpha$-Mn. The AHE is absent in the non-collinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small averaged moment of $\sim 0.02 \mu_B$/Mn. Our results indicate that the emergence of the AHE in $\alpha$-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and non-zero contribution of the Berry curvature across the phase boundary. $\alpha$-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要