Ovarian morphological features and proteome reveal fecundity fitness disadvantages in β-cypermethrin-resistant strains of Blattella germanica (L.) (Blattodea: Blattellidae).

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY(2020)

引用 9|浏览11
暂无评分
摘要
To evaluate whether the development of beta-cypermethrin resistance in Blattella germanica (L.) (Blattaria: Blattellidae) affects the fecundity fitness of this insect and to determine the underlying mechanism, we compared fecundity differences between beta-cypermethrin-resistant (R) and sensitive (S) strains of B. germanica, observed the physiological structural changes of ovaries from an visual perspective, and analyzed differences in the ovarian proteome using proteomic methods. The results showed that, compared with the S strain of B. germanica, the R strain of B. germanica had a significantly higher ootheca shedding rate, a significantly lower number of hatched and surviving nymphs, a significantly higher female proportion in the population and defective ovarian development. Ovarian proteomic analysis showed a total of 64 differentially expressed proteins in the R strain, including 18 upregulated proteins and 46 downregulated proteins. Twenty-four significantly differentially expressed proteins were further studied, and 14 were successfully identified, which were mainly classified into the following categories: immunity-related proteins, development-related proteins, structural proteins, energy metabolism-related proteins and proteins with unknown functions. The differential expression of these proteins reflects the overall changes in cell structure and metabolism associated with beta-cypermethrin resistance and explains the possible molecular mechanism of fecundity fitness disadvantages. In summary, beta-cypermethrin resistance can cause fecundity fitness disadvantages in B. germanica. The metabolic deviations needed to overcome the adverse effects of insecticides may result in an energy exchange that affects energy allocation and, ultimately, the basic needs of the insect. The fitness cost due to insecticide resistance is critical to the delay of the evolution of resistance.
更多
查看译文
关键词
Blattella germanica,Insecticide resistance,Fecundity fitness,Ovary,Ovarian proteomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要