Nitrogen, Phosphorus and Sulfur Co-Doped Pyrolyzed Bacterial Cellulose Nanofibers for Supercapacitors.

NANOMATERIALS(2020)

引用 11|浏览2
暂无评分
摘要
Heteroatom doping is an effective way to raise the electrochemical properties of carbon materials. In this paper, a novel electrode material including nitrogen, phosphorus, and sulfur co-doped pyrolyzed bacterial cellulose (N/P/S-PBC) nanofibers was produced. The morphologies, structure characteristics and electrochemical performances of the materials were investigated by Scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction patterns, X-ray photoelectronic spectroscopy, N-2 sorption analysis and electrochemical measurements. When 3.9 atom% of nitrogen, 1.22 atom% of phosphorus and 0.6 atom% of sulfur co-doped into PBC, the specific capacitance of N/P/S-PBC at 1.0 A/g was 255 F/g and the N/P/S-PBC supercapacitors' energy density at 1 A/g was 8.48 Wh/kg with a power density of 489.45 W/kg, which were better than those of the N/P-PBC and N/S-PBC supercapacitors. This material may be a very good candidate as the promising electrode materials for high-performance supercapacitors.
更多
查看译文
关键词
pyrolyzed bacterial cellulose,nitrogen,phosphorus,sulfur co-doped nanofibres,specific capacitance,supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要