Utilization of Synergistic Effect of Dimension-Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements

ADVANCED MATERIALS TECHNOLOGIES(2020)

引用 5|浏览55
暂无评分
摘要
The demand of emerging transparent and flexible wireless electronic devices is ever-increasing for Internet of Things (IoT) scenarios, like noninvasive healthcare, real-time wearable electronics, etc. However, as an essential part of the IoT wireless communicational devices, radio frequency (RF) antennas are still hampered by poor-flexibility, low-conductivity, and weak-transparency. Here, based on the unique electronic and optical properties of graphene, a method to obtain these appealing features concurrently through promoting synergistic effect between two-dimensional (2D) and one-dimensional (1D) materials is studied. It is found that this method could not only successfully maintain transparency and flexibility, but also greatly enhance the overall performance of the antenna. The fabricated antenna exhibits a 75% light transmittance, from 5.6 to 12.8 GHz ultrawide bandwidth and outstanding durability and stability. Moreover, a transparent and flexible radio frequency identification (RFID) tag is also designed and demonstrated with a remarkable reading distance. These findings show that the method by promoting synergistic effect of hybrid materials has great potential in the design of next generation novel and high-performance wireless electronics.
更多
查看译文
关键词
flexible and transparent wireless electronics,graphene,radio frequency,synergistic effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要