谷歌浏览器插件
订阅小程序
在清言上使用

Repulsion Leads to Coupled Dislocation Motion and Extended Work Hardening in Bcc Metals

Nature communications(2020)

引用 25|浏览13
暂无评分
摘要
Work hardening in bcc single crystals at low homologous temperature shows a strong orientation-dependent hardening for high symmetry loading, which is not captured by classical dislocation density based models. We demonstrate here that the high activation barrier for screw dislocation glide motion in tungsten results in repulsive interactions between screw dislocations, and triggers dislocation motion at applied loading conditions where it is not expected. In situ transmission electron microscopy and atomistically informed discrete dislocation dynamics simulations confirm coupled dislocation motion and vanishing obstacle strength for repulsive screw dislocations, compatible with the kink pair mechanism of dislocation motion in the thermally activated (low temperature) regime. We implement this additional contribution to plastic strain in a modified crystal plasticity framework and show that it can explain the extended work hardening regime observed for [100] oriented tungsten single crystal. This may contribute to better understanding the increase in ductility of highly deformed bcc metals. Work hardening of tungsten in the thermally activated regime is highly orientation dependent. Here, we show that kink-pair nucleation controlled coupled motion of repulsively oriented screw dislocation pairs occurs and leads to an orientation dependent additional plastic slip on unexpected slip systems.
更多
查看译文
关键词
Materials science,Mechanical properties,Metals and alloys,Theory and computation,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要