Mapping Charge Recombination And The Effect Of Point-Defect Insertion In Gaas Nanowire Heterojunctions

arxiv(2021)

引用 2|浏览22
暂无评分
摘要
Electronic devices are extremely sensitive to defects in their constituent semiconductors, but locating electronic point defects in bulk semiconductors has previously been impossible. Here we apply scanning transmission electron microscopy (STEM) electron-beam-induced current (EBIC) imaging to map electronic defects in a GaAs nanowire Schottky diode. Imaging with a nondamaging 80 or 200 kV STEM acceleration potential reveals a minority-carrier diffusion length that decreases near the surface of the hexagonal nanowire, thereby demonstrating that the device's charge collection efficiency (CCE) is limited by surface defects. Imaging with a 300 keV STEM beam introduces vacancy-interstitial (or Frenkel) defects in the GaAs that increase carrier recombination and reduce the CCE of the diode. We create, locate, and characterize a single insertion event, determining that a defect inserted 7 nm from the Schottky interface broadly reduces the CCE by 10% across the entire nanowire device. Variable-energy STEM EBIC imaging thus allows both benign mapping and pinpoint modification of a device's electron-holerecombination landscape, enabling controlled experiments that illuminate the impact of both extended (one- and two-dimensional) and point (zero-dimensional) defects on semiconductor device performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要