Atmospheric fine particulate matter exposure exacerbates atherosclerosis in apolipoprotein E knockout mice by inhibiting autophagy in macrophages via the PI3K/Akt/mTOR signaling pathway.

Ecotoxicology and environmental safety(2020)

引用 27|浏览10
暂无评分
摘要
Fine particulate matter (PM2.5) exposure is intimately linked to atherosclerosis. Defective macrophages autophagy plays an accelerated role in advanced atherosclerosis, however, whether macrophages autophagy has been implicated in the development of PM2.5-induced atherosclerosis has not been analyzed in full detail. Here we aimed to investigate the association between macrophages autophagy and PM2.5-induced atherosclerosis, as well as the underlying mechanisms. ApoE-/- mice were randomly exposed to PM2.5 or filtered air for 3 months, macrophage RAW264.7 cells were isolated and were stimulated with PM2.5 sample, selective inhibitors of PI3K/Akt/mTOR pathway LY294002, triciribine, and rapamycin were used in vitro and in vivo to detect the potential mechanisms. We found that PM2.5 could significantly accelerate atherosclerotic plaque formation in ApoE-/- mice, increase serum levels of TC and LDL-C, accelerate lipid accumulation in RAW264.7 cells, elevate serum and supernatant levels of IL-6, TNF-α and hs-CRP, decrease the number of autophagosomes in aortic plaque and RAW264.7 cells, reduce the expressions of autophagy-related genes LC3-I, LC3-II and Beclin1 in aortic tissues and RAW264.7 cells but increase the expression of autophagy regulator p62, elevate PI3K, Akt and mTOR distributions in aorta, and increase p-PI3K, p-Akt and p-mTOR protein expressions in aorta and RAW264.7 cells. However, these effects of PM2.5 were aggravated with the administration of LY294002, triciribine, or rapamycin. This study indicated that the PI3K/Akt/mTOR pathway is involved in the suppression of autophagy induced by PM2.5 in macrophages, the accelerated effect of PM2.5 on atherosclerosis was mediated by down-regulation of macrophages autophagy via activating the PI3K/Akt/mTOR signaling pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要