Linkage Engineering By Harnessing Supramolecular Interactions To Fabricate 2d Hydrazone-Linked Covalent Organic Framework Platforms Toward Advanced Catalysis

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 82|浏览36
暂无评分
摘要
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailor-made structures and functionalities. To facilitate their utilization for advanced applications, it is crucial to develop a systematic approach to control the properties of COFs, including the crystallinity, stability, and functionalities. However, such an integrated design is challenging to achieve. Herein, we report supramolecular strategy-based linkage engineering to fabricate a versatile 2D hydrazone-linked COF platform for the coordination of different transition metal ions. Intra- and intermolecular hydrogen bonding as well as electrostatic interactions in the antiparallel stacking mode were first utilized to obtain two isoreticular COFs, namely COF-DB and COF-DT. On account of suitable nitrogen sites in COF-DB, the further metalation of COF-DB was accomplished upon the complexation with seven divalent transition metal ions M(II) (M = Mn, Co, Ni, Cu, Zn, Pd, and Cd) under mild conditions. The resultant M/COF-DB exhibited extended p-conjugation, improved crystallinity, enhanced stability, and additional functionalities as compared to the parent COF-DB. Furthermore, the dynamic nature of the coordination bonding in M/COF-DB allows for the easy replacement of metal ions through a postsynthetic exchange. In particular, the coordination mode in Pd/COF-DB endows it with excellent catalytic activity and cyclic stability as a heterogeneous catalyst for the Suzuki-Miyaura cross-coupling reaction, outperforming its amorphous counterparts and Pd/COF-DT. This strategy provides an opportunity for the construction of 2D COFs with designable functions and opens an avenue to create COFs as multifunctional systems.
更多
查看译文
关键词
harnessing supramolecular interactions,hydrazone-linked
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要