Fusion Peptide Engineered "Statically-Versatile" Titanium Implant Simultaneously Enhancing Anti-Infection, Vascularization And Osseointegration

BIOMATERIALS(2021)

引用 51|浏览50
暂无评分
摘要
Although antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA). The FP-engineered implant exhibits over 96.8% antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and methicillin-resistant S. aureus), being stronger than that modified with mixed peptides. This can be mechanistically attributed to the larger bacterial accessible surface area of HHC36 sequence. Notably, the implant can simultaneously enhance cellular proliferation, up-regulate expressions of angiogenesis-related genes/proteins (VEGF and VEGFR-2) of HUVECs and osteogenesis-related genes/proteins (ALP, COL-1, RUNX-2, OPN and OCN) of hBMSCs. In vivo assay with infection and non-infection bone-defect model reveals that the FP-engineered implant can kill 99.63% of S. aureus, and simultaneously promote vascularization and osseointegration. It is believed that this study presents an excellent strategy for developing "statically-versatile" orthopedic implants.
更多
查看译文
关键词
Titanium, Fusion peptide, Antimicrobial activity, Osseointegration, In vivo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要