Neuroprotective Effect Of Nxp031 In The Mptp-Induced Parkinson'S Disease Model

NEUROSCIENCE LETTERS(2021)

引用 17|浏览15
暂无评分
摘要
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Oxidative stress has been identified as one of the major causes of nigrostriatal degeneration in PD. Ascorbic acid plays a role as an efficient antioxidant to protect cells from free radical damage, but it is easily oxidized and loses its antioxidant activity. To overcome this limitation, we have recently developed NXP031, a single-stranded DNA aptamer that binds to ascorbic acid with excellent specificity, reducing its oxidation and increasing its efficacy. This study investigated the neuroprotective effects of NXP031 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Acute degeneration of nigral dopaminergic neurons was induced by four consecutive treatments of MPTP (20 mg/kg) in male C57BL/6 J mice. NXP031 (Vitamin C/Aptamin C 200 mg/4 mg/kg) was administered intraperitoneally for 5 days following MPTP. We observed that the administration of NXP031 ameliorated MPTP-induced loss of dopaminergic neurons in the SN and exhibited improvement of MPTP-mediated motor impairment. We further found that NXP031 increased plasma ascorbic acid levels and inhibited microglia activation-induced neuroinflammation in the SN, which might contribute to the protective effects of NXP031 on nigrostriatal degeneration. Our findings suggest that NXP031 could be a potential therapeutic intervention in PD.
更多
查看译文
关键词
NXP031, Aptamer, Vitamin C, MPTP, Parkinson's disease, Neuroprotection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要