谷歌浏览器插件
订阅小程序
在清言上使用

Bi-paratopic and Multivalent VH Domains Block ACE2 Binding and Neutralize SARS-CoV-2.

Nature chemical biology(2020)

引用 72|浏览46
暂无评分
摘要
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml−1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency.
更多
查看译文
关键词
Biologics,Infectious diseases,Protein design,SARS-CoV-2,Structural biology,Chemistry/Food Science,general,Biochemical Engineering,Biochemistry,Cell Biology,Bioorganic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要