Misfit Layer Compounds: A Platform For Heavily Doped 2d Transition Metal Dichalcogenides

ADVANCED FUNCTIONAL MATERIALS(2021)

引用 14|浏览72
暂无评分
摘要
Transition metal dichalcogenides (TMDs) display a rich variety of instabilities such as spin and charge orders, Ising superconductivity, and topological properties. Their physical properties can be controlled by doping in electric double-layer field-effect transistors (FET). However, for the case of single layer NbSe2, FET doping is limited to approximate to 1 x 10(14) cm(-2), while a somewhat larger charge injection can be obtained via deposition of K atoms. Here, by performing angle-resolved photoemission spectroscopy, scanning tunneling microscopy, quasiparticle interference measurements, and first-principles calculations it is shown that a misfit compound formed by sandwiching NbSe2 and LaSe layers behaves as a NbSe2 single layer with a rigid doping of 0.55-0.6 electrons per Nb atom or approximate to 6 x 10(14) cm(-2). Due to this huge doping, the 3 x 3 charge density wave is replaced by a 2 x 2 order with very short coherence length. As a tremendous number of different misfit compounds can be obtained by sandwiching TMDs layers with rock salt or other layers, this work paves the way to the exploration of heavily doped 2D TMDs over an unprecedented wide range of doping.
更多
查看译文
关键词
charge density waves, highly doped materials, misfit compounds, single layer materials, transition metal dichalcogenides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要