Neuronal Brain-Derived Neurotrophic Factor Manipulates Microglial Dynamics

GLIA(2021)

引用 10|浏览8
暂无评分
摘要
Brain-derived neurotrophic factor (BDNF), a main member of the neurotrophin family that is active in the brain, supports neuronal survival and growth. Microglial BDNF affects both the structural and functional properties of neurons. In contrast, whether and how neuronal BDNF affects microglial dynamics remain largely undetermined. Here, we examined the effects of BDNF on the properties of microglia in the CA3 region of the hippocampus. We chose this site because the axonal boutons of hippocampal mossy fibers, which are mostly formed in the CA3 region, contain the highest levels of BDNF in the rodent brain. We transfected mouse dentate granule cells with an adeno-associated virus that encodes both a BDNF short hairpin RNA (shRNA) and red fluorescent protein to examine the effects of mossy fiber-derived BDNF on microglia. Based on immunohistochemistry, BDNF knockdown with an shRNA resulted in an increase in microglial density in the mossy fiber pathway and increased engulfment of mossy fiber axons by microglia. In addition, we performed time-lapse imaging of microglial processes in hippocampal slice cultures to examine the effects of BDNF on microglial motility. Time-lapse imaging revealed increases in the motility of microglial processes and the engulfment of mossy fiber synapses by microglia when BDNF signaling was pharmacologically blocked. Thus, neuronal BDNF prevents microglia from engulfing mossy fiber synapses in the hippocampus.
更多
查看译文
关键词
BDNF, hippocampus, microglia, neuroplasticity, phagocytosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要