EEG-Based Brain-Computer Interfaces are Vulnerable to Backdoor Attacks

arxiv(2023)

引用 9|浏览70
暂无评分
摘要
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks. This paper proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which makes adversarial attacks much easier to implement. One can create dangerous backdoors in the machine learning model by injecting poisoning samples into the training set. Test samples with the backdoor key will then be classified into the target class specified by the attacker. What most distinguishes our approach from previous ones is that the backdoor key does not need to be synchronized with the EEG trials, making it very easy to implement. The effectiveness and robustness of the backdoor attack approach is demonstrated, highlighting a critical security concern for EEG-based BCIs and calling for urgent attention to address it.
更多
查看译文
关键词
backdoor attacks,brain–computer interfaces,eeg-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要