Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change.

Water research(2020)

引用 63|浏览215
暂无评分
摘要
A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5-15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5-35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要