Creating compressive stress at the NiOOH/NiO interface for water oxidation

JOURNAL OF MATERIALS CHEMISTRY A(2020)

引用 55|浏览31
暂无评分
摘要
Enhancing the oxygen evolution reaction (OER) performance of NiO materials will greatly expand their applications as low-cost, bifunctional electrocatalysts for water splitting reactions. Introducing stress into the surface layer of catalysts represents an effective method to enhance their catalytic reactivity. Herein, we create compressive stress at the NiOOH/NiO interface using the battery conversion chemistry and in situ Ni to NiOOH transformation. As a result, the OER performance is enhanced by 20 fold compared with that of pure NiO. However, due to the corrosive environment that the electrocatalyst experiences under OER conditions, the stress is released after several CV cycles. The present study demonstrates the importance of interfacial stress that can be produced from in situ surface phase transformation of the electrocatalyst, as well as highlights the challenge of maintaining the mechanical stress under OER conditions during long-term applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要