Suppression Of Thermally Excited Electron-Spin Relaxation In Ingaas Quantum Dots Using P-Doped Capping Layers Toward Enhanced Room-Temperature Spin Polarization

APPLIED PHYSICS LETTERS(2020)

引用 6|浏览3
暂无评分
摘要
The suppression of a thermally excited electron-spin relaxation in InGaAs quantum dots (QDs) using p-doped capping layers toward enhanced room-temperature (RT) spin polarization has been demonstrated, in which the electron-spin polarization in QD excited states (ESs) was measured through time-resolved spin-dependent photoluminescence. We revealed that the p-doping of QDs can enhance the emission intensity of QD-ES by approximately twofold to threefold over a wide temperature range. An electron-spin relaxation time of 106 ps was observed at 293K for p-doped QDs, which is approximately three times longer than the radiative lifetime of 36 ps, relative to the shorter electron-spin relaxation time of 71 ps for undoped QDs. The increased electron-spin lifetime was mainly attributed to the suppressed relaxation of the electron spin reinjected from the p-doped capping barrier after thermal escape from an ES, where the D'yakonov-Perel' spin relaxation in the barrier was potentially weakened through impurity scattering. These results suggest that InGaAs QDs with p-doped capping layers have a significant advantage for use in spin-functional optical active layers with a higher spin polarization toward RT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要