Highly dispersible graphene oxide nanoflakes in pseudo-gel-polymer porous separators for boosting ion transportation

Carbon(2020)

引用 9|浏览3
暂无评分
摘要
Gel-type polymer electrolytes have received considerable attention due to the battery explosion issue associated with volatile liquid-electrolyte-based lithium ion batteries (LIBs). However, the high ionic conductivity of gel-type polymer electrolytes originates from polymer swelling by the liquid electrolyte, and these materials inevitably have poor mechanical strength during device deformation. Here, we report structural gel-type polymer separators with highly porous and uniform morphology arising from the phase inversion of PVdF-HFP polymers with highly dispersible nanoscale graphene oxide nanoflake (GON). Via simple γ-ray irradiation of conventional graphene oxide solution, large 2D particles were cut into small 2D particles with a narrow size distribution, which in turn resulted in a dramatic change in solution transparency and particle dispersity. γ-ray-irradiated graphene oxide nanoflakes (γ-GON) with high dispersity are located inside the porous PVdF-HFP skeleton, inducing additional micron-sized pores of ∼8 μm in the composite membranes. The modified porous film showed both gel-polymer electrolyte-like (uptake of 1.7 times more liquid electrolyte than conventional polyethylene separator) and polymer separator-like behavior (maintenance of original porous structure after soaked with liquid electrolyte). As a result, this pseudo-gel-polymer separator with a tailored pore structure has uniform ion flux and enhanced interfacial properties with electrodes, contributing superior battery performance.
更多
查看译文
关键词
Lithium ion battery,Gamma ray,Separator,Gel electrolyte,Enhanced ion flux
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要