Improving the Uncertainty of Exhaust Gas Temperature Measurements in Internal Combustion Engines

JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME(2020)

引用 5|浏览1
暂无评分
摘要
Accurate measurement of exhaust gas temperature (EGT) in internal combustion engines (ICEs) is a challenging task. The most common, and also the most practical, method of measurement is to insert a physical probe, for example, a thermocouple or platinum resistance thermometer, directly into the exhaust flow. Historically, consideration of the measurement errors induced by this arrangement has focused on the effects of radiation and the loss of temporal resolution naturally associated with a probe of finite thermal inertia operating within a pulsating flow with a time-varying heat input. However, a recent numerical and experimental study has shown that conduction errors may also have a significant effect on the measured EGT, with errors approaching similar to 80K depending on engine operating conditions. In this work, the authors introduce a new temperature compensation method that can correct for the combined radiation, conduction, and dynamic response errors introduced during the measurement and thereby reconstruct the "true" crank-angle resolved EGT to an estimated accuracy of +/- 1.5%. The significance of this result is demonstrated by consideration of a first law energy balance on an engine. It is shown that the exhaust gas enthalpy term is underestimated by 15-18% when calculated using conventional time-averaged data as opposed to using the mass-average exhaust enthalpy that is obtained by combining the reconstructed temperature data with crank angle-resolved exhaust flow rates predicted by a well-validated one-dimensional (1D) simulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要