Remote detection and recording of atomic-scale spin dynamics

COMMUNICATIONS PHYSICS(2020)

引用 1|浏览4
暂无评分
摘要
Atomic spin structures assembled by means of scanning tunneling microscopy (STM) provide valuable insight into the understanding of atomic-scale magnetism. Among the major challenges are the detection and subsequent read-out of ultrafast spin dynamics due to a dichotomy in travel speed of these dynamics and the probe tip. Here, we present a device composed of individual Fe atoms that allows for remote detection of spin dynamics. We have characterized the device and used it to detect the presence of spin waves originating from an excitation induced by the STM tip several nanometres away; this may be extended to much longer distances. The device contains a memory element that can be consulted seconds after detection, similar in functionality to e.g. a single photon detector. We performed statistical analysis of the responsiveness to remote spin excitations and corroborated the results using basic calculations of the free evolution of coupled quantum spins.
更多
查看译文
关键词
Magnetic devices,Magnetic properties and materials,Spintronics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要