Single Vector Multiplexed Shrna Provides A Non-Gene Edited Strategy To Concurrently Knockdown The Expression Of Multiple Genes In Car T Cells.

JOURNAL OF CLINICAL ONCOLOGY(2020)

引用 1|浏览4
暂无评分
摘要
3103 Background: Engineered T cells expressing chimeric antigen receptors (CAR) are now delivering clinically relevant results in patients with advanced hematological malignancies. One critical area for future development is to modulate gene expression thereby endowing the engineered T cell with specific desired features that enhance anti-tumor activity. Methods: Short-hairpin RNA (shRNA) were cloned individually or multiplexed within micro-RNA scaffolds that enabled the co-expression of the individual shRNA with a CAR and a selectable marker all driven by a PolII promoter within a single retroviral vector. Primary human T cells transduced with the CAR-shRNA vectors were selected, expanded in vitro, subjected to negative selection to eliminate any remaining TCR+ cells and examined for target gene expression and functional activity. Results: A 500bp DNA fragment incorporating a shRNA-specific for CD3ζ cloned into a retroviral vectoreffectively knocked down expression of CD3ζ in transduced BCMA-specific CAR T cells. The consequent reduction of cell surface TCR expression resulted in minimal cytokine production upon TCR stimulation in vitro providing a potential allogeneic CAR T approach. These CAR T cells showed no demonstrable evidence of GvHD induction when infused in NSG mice yet maintained BCMA-specific CAR activity in KMS-11 and RPMI-8226 established myeloma models. Initial studies further confirmed that two shRNA could be expressed from a single retroviral vector to modulate the expression of multiple genes. Further engineering of the microRNA framework reduced the size of the transgene load to 394bp while enabling the expression of up to 4 shRNA within a single vector. shRNA specific for CD3ζ, beta-2-microglobulin, CD52 and diacylglycerol kinase alpha were engineered into the framework downstream of a CD19-CAR. Transduced Jurkat cells showed concurrent knockdown of the respective gene products at the mRNA and protein levels. Conclusions: A first-in-human clinical trial evaluating the first-generation single shRNA-vector in the context of a BCMA-targeting CAR as a non-gene edited approach to allogeneic CAR T cell therapy will be initiated in 2020. The proof of principle study here shows that multiple shRNAs are active within a single viral vector thereby avoiding the need for bespoke individual clinical reagents to target multiple genes. The multiplexed shRNA vector system is now in further development to explore whether this strategy can enhance the therapeutic potential of CAR T cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要