Hypervelocity Impact Cratering on Semi-Infinite Concrete Targets of Projectiles with Different Length to Diameter Ratios

APPLIED SCIENCES-BASEL(2020)

引用 6|浏览5
暂无评分
摘要
Featured Application the research content of this article may provide a reference for military defense engineering as well as shielding design for aerospace applications. Abstract Impact cratering experiments were performed on semi-infinite concrete targets with 7 mm-diameter 40CrNiMo steel long-rod projectiles at impact velocities ranging from 2117 m/s to 3086 m/s by using a two-stage combustion light-gas gun. After the impact experiments, the crater diameter and depth as well as the crater volume were carefully measured. The concrete fragments were collected from the target chamber and the fragment mass was measured. The size of the crater (including the volume, diameter, and depth) and the fragment mass increased with increasing impact velocities, while the fragment distributions at different impact velocities were almost the same. Scaling laws for the crater volume impacted by the rod-shaped projectile were discussed and an empirical formula of crater volume was determined by the experimental data from the literature. Through the verification of the present experimental results, the predictive ability of the empirical formula proved to be reliable. Scaling laws for the size distribution of concrete fragments were also discussed. The normalized fragment mass distribution was proportional to the impact velocity raised to the power 1.5.
更多
查看译文
关键词
impact cratering experiments,long-rod,concrete,fragment distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要