A method of magnetic field measurement in a scanning electron microscope using a microcantilever magnetometer

METROLOGY AND MEASUREMENT SYSTEMS(2020)

引用 3|浏览28
暂无评分
摘要
Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano-electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the a-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.
更多
查看译文
关键词
scanning electron microscope,magnetometry,microcantilever
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要