Transient Flow Characteristics And Performance Of A Solid Rocket Motor With A Pintle Valve

CHINESE JOURNAL OF AERONAUTICS(2020)

引用 17|浏览9
暂无评分
摘要
The pintle valve is currently the most promising technology among all thrust control methods for solid rocket motors. Pintle structure and working condition play a critical role in the successful operation of a pintle motor. Here, 2D transient simulations of a pintle motor using dynamic meshing are performed. Reynolds-averaged Navier-Stokes equations are solved with the implementation of an RNG k-epsilon turbulence model. In cold flow test, emphasis is placed on the effect of pintle structure, and in hot flow test, emphasis is placed on the effect of propellant pressure exponent. Validation is performed first by comparing the present results with available cold-test experimental data. This shows that the transient simulations can provide good predictions for pintle motors with a relative error of less than 2% in terms of the chamber pressure. It can be found that, when the gas supply system is different, the working principles and conditions of pintle motors are different. The feedback process in propellant combustion has a significant impact on its operation and the effect on the pintle motor performance of different pintle structures is achieved by different variations in the equivalent throat area. Finally, the pressure exponent is an important parameter in hot flow test and changes of thrust in hot flow test are not monotonic, because changes in the flow field and motor performance are asynchronous. (c) 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Numerical simulation, Pintle motor, Shock wave, Solid propellant rocket, Variable thrust
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要