Numerical and experimental investigation of throttleable hybrid rocket motor with aerospike nozzle

Aerospace Science and Technology(2020)

引用 17|浏览2
暂无评分
摘要
Abstract Hybrid rocket motors (HRMs) easily achieve variable thrust by changing oxidizer mass flow rate. This paper represents numerical and experimental studies on the throttleable HRM with aerospike nozzle, which can enhance the performances of the throttleable HRM theoretically. By comparing the performance of the throttleable HRM with the aerospike nozzle and that with the de Laval nozzle, the characteristics of the aerospike nozzle applied to the throttleable HRM are explored. Both numerical and experimental investigations are conducted. In the simulation part, characteristic velocity, combustion efficiency, thrust coefficient and specific impulse of the HRM with the two types of nozzles at different oxidizer mass flow rate are obtained. Comparing with the HRM with the de Laval nozzle, the HRM with the aerospike nozzle can improve specific impulse by about 8.9%∼23.4% when the working pressure ratio is lower than the design pressure ratio. The combustion efficiency of the throttleable HRM with the aerospike nozzle is 3.9%∼8.6% higher than that with the de Laval nozzle because of the core structure of the aerospike nozzle. When the oxidizer mass flow rate is 50 g/s, the thrust coefficient of the aerospike nozzle is increased by 12.3% relative to that of the de Laval nozzle which flow separation occurs in. The corresponding firing tests are performed by the lab-scale motor with 90% hydrogen peroxide (HP) and polyethylene (PE) grain. The numerical and experimental results agree well. The combination of the throttleable HRM and the aerospike nozzle has the advantages to improve the performance of HRMs.
更多
查看译文
关键词
Hybrid rocket motor,Aerospike nozzle,Numerical simulation,Experimental study
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要